23/24 Harvest

Results

Evaluation of the agronomic efficiency of **the SE, HPE, and SS lines** in the correction and fertilization of pastures.

Araguaína | TO Partnership: Universidade Federal do Norte de Tocantins - UFNT

Objective

Performance

To evaluate the agronomic efficiency of the SE, HPE, and SS lines in the correction and fertilization of pastures.

Araguaína | TO

Study parameters

Brachiaria brizantha

Planting

Soil type

Application

Cuts (every 25 days)

Experimental plots

Cv. Marandu (braquiarão)

February 2024

Quartzipsamment

Broadcast at planting (2024)

March (1st cut) April (2nd cut) May (3rd cut)

16 m² plots

*Annual application dose.

**Single application dose.

¹Doses determined based on Ca and Mg extraction by the forage, considering a production of 4,000 Kg ha⁻¹ cut and a final of 12,000 Kg ha⁻¹ year⁻¹ (excluding the leveling cut). ²Doses defined based on the management practiced in the region, aiming at providing 25 P units (57.25 P₂O₅), 180 N units, and 180 K units, with 100% as K₂O. *Annual application dose. **Single application dose.

Parameters evaluated

Dry matter

A 500 g sample was placed in a forced-air oven at 60°C until constant weight to determine the moisture content and subsequently calculate the dry matter weight.

Soil chemical analysis

Samples were collected at two times, before the application of the products and after the last cut.

Technical efficiency and economic return

Treatments	DRY MATTER (Kg ha-1)								
<i>neutinents</i>	1 st CUT	2 nd CUT	3 rd CUT						
T1	959.78 b	1436.90 b	1565.41 b						
T2	1958.87 a	2680.20 a	4324.91 a						
Т3	2242.17 a	2621.21 a	3642.06 a						
Τ4	1827.80 a	2420.17 a	4036.28 a						
Т5	1731.49 a	2751.29 a	3547.51 a						
T6	2701.74 a	2654.21 a	3943.33 a						
Т7	1918.17 a	2486.79 a	3703.36 a						
AVERAGE	1905.72	2435.82	3537.55						
CV (%)	24.21	23.97	18.43						

	Treatments	Doses (Kg ha ^{_1})
T1	Unfertilized soil	0
T2	SE Mag + SS pHos + HPE pHos NK	250+239+900
Т3	SE Mag + SS + Urea + K chloride	250+358+391+300
T4	SE Mag + SS pHos + Urea + K chloride	250+239+391+300
Т5	Limestone + SS + Urea + K chloride	3000+358+391+300
Т6	Limestone + SS pHos + HPE pHos NK	3000+239+900
T7	Limestone + SS pHos + Urea + K chloride	3000+239+391+300

Averages followed by different letters differ from each other using the Tukey 5% test.

Conclusions

Dry Matter (DM)

All treatments with the application of conditioners and fertilizers had significantly higher **DM** values than the control.

1st Cut

Treatments T3 (SE Mag + SS + Urea + Potassium chloride) and T6 (Limestone + SS pHos + HPE pHos NK) showed an increase of 29% and 56% in DM compared to the standard fertilization.

2nd Cut

Treatments **T5 (Limestone + SS + Urea + Potassium chloride)** and **T2 (SE Mag + SS pHos + HPE pHos NK)** showed the highest DM.

3rd Cut

Treatments **T2 (SE Mag + SS pHos + HPE pHos NK)** and **T4 (SE Mag + SS pHos + Urea + Potassium chloride)** showed the highest DM, with an increase of 22% and 14%.

20/21 Harvest

Results

To evaluate the efficiency of the **SE Line** in pasture recovery.

Objective

Performance

To evaluate the efficiency of the **SE Line** in pasture recovery.

Porto Velho| RO

Study parameters

Grass species

Standard fertilization

Polli's treatment

Application

Experimental plot

Brachiaria humidícola

None

SE SuMag 640 Kg ha⁻¹

Broadcast – May 2024

0.5 ha

Unfertilized

No application of soil conditioners

0 Kg ha⁻¹

¹Dose determined based on soil analysis. Initially, the liming need was calculated by the base saturation method (V%), to raise the V% to 55%, requiring 3.2 t ha⁻¹. After that, SE SuMag was recommended in a proportion of 20% of the conventional corrective dose, i.e., 640 Kg ha⁻¹.

Parameters evaluated

Soil chemical analysis

Soil analysis before application, after 180 days, one year and two months, two years and one month, and two years and seven months after application.

Data	рН	K	Са	Mg	Al	SB	T	М.О.	V	Са	Mg	K	Р
Dute	CaCl ₂			cmol _c	dm-3					%			mg dm ⁻³
Before application	4.1	0.05	0.5	0.3	1.00	0.85	6.35	1.5	13	8	5	1	1.2
6 months after application	4.1	0.15	0.9	0.6	0.19	1.65	7.15	2.1	23	13	8	2	2.1
14 months after application	4.3	0.19	1.0	0.8	0.93	2.00	6.99	2.2	29	14	11	3	3.1
25 months after application	4.5	0.16	1.5	1.0	0.53	2.66	8.17	2.3	33	23	15	2	8.8
31 months after application	4.2	0.08	2.6	1.4	0.60	4.08	9.58	2.1	43	41	22	1	1.3

Table 1 – Results of soil analyses obtained before, 180 days, one year and two months, two years and one month, and two years and seven months after application of 640 Kg ha⁻¹ of SE SuMag.

Brachiaria humidícola Pasture

22 Harvest

Results

Agronomic efficiency of the **SE Line** in pasture restoration

Objective

Performance

Agronomic efficiency of the **SE Line** in pasture restoration

🙎 Porto Velho| TO

Study parameters

Crop

Standard fertilization

Polli's treatment

Application

Experimental plot

Pasture | *Brachiaria*

None

SE SuMag 820 Kg ha⁻¹

Broadcast – April 2022

6.84 ha

Unfertilized

No application of soil conditioners

0 Kg ha⁻¹

¹Doses determined based on the liming requirement according to the base saturation method (V%), to raise V% to 55%, with a proportion of 20% of the conventional corrective dose.

Parameters evaluated

Soil chemical analysis

Soil analysis before and 270 days after application.

Areas Analyses	Anglycos	рН	Р	K	Са	Mg	AI	Н	Τ	V	М.О.
	CaCl ₂	mg dm-3				%	g dm-3				
Dict 1	1 st analyses	3.7	1.0	16.2	0.60	0.25	2.00	5.65	8.54	10.42	31.9
PIOL I	2 nd analyses	4.2	2.4	34.3	0.70	0.30	0.65	4.67	6.42	16.98	23.4
Dist 2	1 st analyses	3.7	1.3	18.2	0.15	0.08	1.25	4.05	5.58	5.02	17.6
Plot 2	2 nd analyses	4.1	2.7	33.3	0.75	0.33	0.75	4.67	6.59	17.72	23.6

Table 1 - Soil chemical parameters before and after the application of 820 Kg ha⁻¹ of SE SuMag.

22 Harvest

Results

Efficiency of the **SE Line** in soil correction and nutrient availability in pastures

Objetivo

Performance

Efficiency of the **SE Line** in soil correction and nutrient availability in pastures

📎 Pontual do Marape| MT

Study parameters

Crop

Standard fertilization

Polli's treatment

Application

Experimental plot

Pasture | *Brachiaria*

MAP 170 Kg ha⁻¹

SE Mag 400 Kg ha⁻¹

Broadcast – January 2022

25 ha

Unfertilized

0 Kg ha⁻¹

¹Doses determined based on the liming requirement according to the base saturation method (V%), to raise V% to 80%, requiring 2 t ha⁻¹ of conventional limestone. After that, SE MAG was recommended in a proportion of 20% of the conventional corrective dose, i.e., 400 Kg ha⁻¹.

Parameters evaluated

Soil chemical analysis

Soil analysis at a depth of 0-20 cm, before and after the application of **SE Mag**.

Visual aspect of the pasture

Areas	Analyses	рН	Р	K	Са	Mg	Т	V	М.О.
Alcus Allulyse.		CaCl ₂	mg dm-3		cmc		%	g dm ⁻³	
	Before	4.3	3.0	0.22	0.80	0.10	3.4	33	13.90
Sample 1	After	5.5	6.0	0.06	2.00	0.90	6.2	48	29.79
Sample 2	Before	4.5	4.0	0.07	1.00	0.20	3.3	37	14.46
Sample 2	After	5.1	6.0	0.16	2.00	0.40	5.2	42	25.19

Table 1 - Soil chemical parameters (0-20 cm), before and after the application of 400 Kg ha⁻¹ of SE Mag.

Pictures 1 - Pasture before and after SE Mag's application.

A and B - before application; C - 45 days after application

23 Harvest

Results

Efficiency of the **SE Line** in nutrient availability for sugarcane

Objective

Performance

Evaluation of the efficiency of the **SE Line** in providing nutrients for sugarcane.

Study parameters

Crop

Standard fertilization

Application

Experimental plot

Sugarcane IACSP95 5094

Limestone 1000 Kg ha⁻¹ Phosphogypsum 1000 Kg ha⁻¹ SE SuMag 400 Kg ha⁻¹

10 ha

Treatments	Denth	рН	М.О.	Р	S	K	Са	Mg	SB	СТС	V	AI
mediments	CaCl ₂		g dm-3	mg dm-3		cmol _c dm ⁻³					%	m%
Standard	0-25	5a	26a	9a	13b	За	14b	7b	24b	45b	54a	1a
SE SuMag	0-25	ба	28a	14b	8a	4a	31a	16a	51a	68a	75a	0a
Standard	25-50	5a	20a	6а	26a	1b	17a	8a	26a	57a	46a	4a
SE SuMag	25-50	5a	21a	11a	21a	2a	18a	10a	30a	53a	54a	1b

Sugarcane data submitted to statistical analysis using the t-test (10%)

Productivity (ton ha⁻¹) Standard +6.45% SE SuMag

23 Harvest

Results

Efficiency of the **SE Line** in nutrient availability for sugarcane

Objective

Performance

Evaluation of the efficiency of the **SE Line** in providing nutrients for sugarcane.

 \bigcirc

Study Parameters

Crop

Canefield age

Standard fertilization

Application

Experimental plot

Sugarcane CTC 9003

5 leaves

Dolomitic limestone 1500 Kg ha⁻¹

SE Mag 820 Kg ha⁻¹

3.31 ha

Area's Productivity, Total Recoverable Sugar, and Profitability (R\$)

Our Company

Address R. Victor Tosin, 563 | Colombo-PR

Telephone (41) 3656-3244

E-mail contato@pollifertilizantes.com.br

Website www.pollifertilizantes.com.br

Thank you!

Follow us

@pollifertilizantes